Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Cell Rep Med ; 5(4): 101484, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38554704

The use of Bruton tyrosine kinase (BTK) inhibitors such as ibrutinib achieves a remarkable clinical response in mantle cell lymphoma (MCL). Acquired drug resistance, however, is significant and affects long-term survival of MCL patients. Here, we demonstrate that DNA methyltransferase 3A (DNMT3A) is involved in ibrutinib resistance. We find that DNMT3A expression is upregulated upon ibrutinib treatment in ibrutinib-resistant MCL cells. Genetic and pharmacological analyses reveal that DNMT3A mediates ibrutinib resistance independent of its DNA-methylation function. Mechanistically, DNMT3A induces the expression of MYC target genes through interaction with the transcription factors MEF2B and MYC, thus mediating metabolic reprogramming to oxidative phosphorylation (OXPHOS). Targeting DNMT3A with low-dose decitabine inhibits the growth of ibrutinib-resistant lymphoma cells both in vitro and in a patient-derived xenograft mouse model. These findings suggest that targeting DNMT3A-mediated metabolic reprogramming to OXPHOS with decitabine provides a potential therapeutic strategy to overcome ibrutinib resistance in relapsed/refractory MCL.


Adenine/analogs & derivatives , Lymphoma, Mantle-Cell , Piperidines , Protein-Tyrosine Kinases , Humans , Animals , Mice , Adult , Agammaglobulinaemia Tyrosine Kinase/metabolism , Drug Resistance, Neoplasm/genetics , DNA Methyltransferase 3A , Oxidative Phosphorylation , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/genetics , Lymphoma, Mantle-Cell/pathology , Decitabine/metabolism , Decitabine/therapeutic use
2.
Haematologica ; 109(1): 186-199, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-37534528

Despite recent advances in the therapy of diffuse large B-cell lymphoma (DLBCL), many patients are still not cured. Therefore, new therapeutic strategies are needed. The anti-apoptotic B-cell lymphoma 2 (BCL2) gene is commonly dysregulated in DLBCL due to various mechanisms such as chromosomal translocation t(14;18)(q32;q21) and copy number alterations; however, targeting BCL-2 with the selective inhibitor, venetoclax, led to response in only a minority of patients. Thus, we sought to identify a rational combination partner of venetoclax to improve its activity against DLBCL cells. Utilizing a functional assay, dynamic BH3 profiling, we found that the DNA hypomethylating agent decitabine increased mitochondrial apoptotic priming and BCL-2 dependence in DLBCL cells. RNA-sequencing analysis revealed that decitabine suppressed the pro-survival PI3K-AKT pathway and altered the mitochondria membrane composition in DLBCL cell lines. Additionally, it induced a DNA damage response and increased BAX and BAK activities. The combination of decitabine and venetoclax synergistically suppressed proliferation of DLBCL cells both in vitro and in vivo in a DLBCL cell line-derived xenograft mouse model. Our study suggests that decitabine plus venetoclax is a promising combination to explore clinically in DLBCL.


Lymphoma, Large B-Cell, Diffuse , Phosphatidylinositol 3-Kinases , Humans , Animals , Mice , Decitabine/pharmacology , Decitabine/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Proto-Oncogene Proteins c-bcl-2 , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Apoptosis
3.
bioRxiv ; 2023 Jun 09.
Article En | MEDLINE | ID: mdl-37333339

Treatment of relapsed/refractory B cell acute lymphoblastic leukemia (B-ALL) remains a challenge, particularly in patients who do not respond to traditional chemotherapy or immunotherapy. The objective of this study was to assess the efficacy of fedratinib, a semi selective JAK2 inhibitor and venetoclax, a selective BCL-2 inhibitor, on human B-ALL using both single-agent and combinatorial treatments. The combination treatment of fedratinib and venetoclax improved killing of the human B-ALL cell lines RS4;11 and SUPB-15 in vitro over single-agent treatments. This combinatorial effect was not detected in the human B-ALL cell line NALM-6, which was less responsive to fedratinib due to the absence of Flt3 expression. The combination treatment induces a unique gene expression profile relative to single-agent treatment and with an enrichment in apoptotic pathways. Finally, the combination treatment was superior to single agent treatment in an in vivo xenograft model of human B-ALL with a two-week treatment regimen significantly improving overall survival. Overall, our data demonstrates the efficacy of a combinatorial treatment strategy of fedratinib and venetoclax against human B-ALL expressing high levels of Flt3.

4.
J Genet Genomics ; 47(7): 361-372, 2020 07 20.
Article En | MEDLINE | ID: mdl-32994141

DNA methyltransferases (DNMTs) are an evolutionarily conserved family of DNA methylases, transferring a methyl group onto the fifth carbon of a cytosine residue. The mammalian DNMT family includes three major members that have functional methylation activities, termed DNMT1, DNMT3A, and DNMT3B. DNMT3A and DNMT3B are responsible for methylation establishment, whereas DNMT1 maintains methylation during DNA replication. Accumulating evidence demonstrates that regulation of DNA methylation by DNMTs is critical for normal hematopoiesis. Aberrant DNA methylation due to DNMT dysregulation and mutations is known as an important molecular event of hematological malignancies, such as DNMT3A mutations in acute myeloid leukemia. In this review, we first describe the basic methylation mechanisms of DNMTs and their functions in lymphocyte maturation and differentiation. We then discuss the current understanding of DNA methylation heterogeneity in leukemia and lymphoma to highlight the importance of studying DNA methylation targets. We also discuss DNMT mutations and pathogenic roles in human leukemia and lymphoma. We summarize the recent understanding of how DNMTs interact with transcription factors or cofactors to repress the expression of tumor suppressor genes. Finally, we highlight current clinical studies using DNMT inhibitors for the treatment of these hematological malignancies.


DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , Hematologic Neoplasms/genetics , DNA/genetics , DNA Methylation/genetics , DNA Methyltransferase 3A , Epigenesis, Genetic/genetics , Hematologic Neoplasms/pathology , Humans , Mutation/genetics , DNA Methyltransferase 3B
6.
Adv Exp Med Biol ; 963: 337-358, 2017.
Article En | MEDLINE | ID: mdl-28197922

Sumoylation, a reversible post-transcriptional modification process, of proteins are involved in cellular differentiation, growth, and even motility by regulating various protein functions. Sumoylation is not limited to cytosolic proteins as recent evidence shows that nuclear proteins, those associated with membranes, and mitochondrial proteins are also sumoylated. Moreover, it is now known that sumoylation plays an important role in the process of major human ailments such as malignant, cardiovascular and neurological diseases. In this chapter, we will highlight and discuss how the localization of SUMO protease and SUMO E3 ligase in different compartments within a cell regulates biological processes that depend on sumoylation. First, we will discuss the key role of sumoylation in the nucleus, which leads to the development of endothelial dysfunction and atherosclerosis . We will then discuss how sumoylation of plasma membrane potassium channel proteins are involved in epilepsy and arrhythmia. Mitochondrial proteins are known to be also sumoylated, and the importance of dynamic-related protein 1 (DRP1) sumoylation on mitochondrial function will be discussed. As we will emphasize throughout this review, sumoylation plays crucial roles in different cellular compartments, which is coordinately regulated by the translocation of various SUMO proteases and SUMO E3 ligase. Comprehensive approach will be necessary to understand the molecular mechanism for efficiently moving around various enzymes that regulate sumoylation within cells.


Cardiovascular Diseases/metabolism , Cardiovascular System/metabolism , Nervous System Diseases/metabolism , Nervous System/metabolism , Signal Transduction , Small Ubiquitin-Related Modifier Proteins/metabolism , Sumoylation , Ubiquitin-Protein Ligases/metabolism , Animals , Cardiovascular Diseases/pathology , Cardiovascular Diseases/physiopathology , Cardiovascular System/pathology , Cardiovascular System/physiopathology , Humans , Nervous System/pathology , Nervous System/physiopathology , Nervous System Diseases/pathology , Nervous System Diseases/physiopathology
7.
Cell Mol Life Sci ; 74(10): 1835-1858, 2017 05.
Article En | MEDLINE | ID: mdl-28039525

Atherosclerosis rarely develops in the region of arteries exposed to undisturbed flow (u-flow, unidirectional flow). Instead, atherogenesis occurs in the area exposed to disturbed flow (d-flow, multidirectional flow). Based on these general pathohistological observations, u-flow is considered to be athero-protective, while d-flow is atherogenic. The fact that u-flow and d-flow induce such clearly different biological responses in the wall of large arteries indicates that these two types of flow activate each distinct intracellular signaling cascade in vascular endothelial cells (ECs), which are directly exposed to blood flow. The ability of ECs to differentially respond to the two types of flow provides an opportunity to identify molecular events that lead to endothelial dysfunction and atherosclerosis. In this review, we will focus on various molecular events, which are differentially regulated by these two flow types. We will discuss how various kinases, ER stress, inflammasome, SUMOylation, and DNA methylation play roles in the differential flow response, endothelial dysfunction, and atherosclerosis. We will also discuss the interplay among the molecular events and how they coordinately regulate flow-dependent signaling and cellular responses. It is hoped that clear understanding of the way how the two flow types beget each unique phenotype in ECs will lead us to possible points of intervention against endothelial dysfunction and cardiovascular diseases.


Arteries/pathology , Atherosclerosis/metabolism , Atherosclerosis/pathology , Endothelial Cells/pathology , Signal Transduction , Animals , Arteries/metabolism , Atherosclerosis/blood , Endoplasmic Reticulum Stress , Endothelial Cells/metabolism , Humans , Inflammasomes/metabolism , Mitogen-Activated Protein Kinase 7/metabolism , Mitogen-Activated Protein Kinases/metabolism , Protein Kinase C/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Regional Blood Flow , Sterol Regulatory Element Binding Protein 2/metabolism , Sumoylation , Tumor Suppressor Protein p53/metabolism
8.
Amino Acids ; 48(1): 257-267, 2016 Jan.
Article En | MEDLINE | ID: mdl-26334346

Suboptimal nutrient intake represents a limiting factor for growth and long-term survival of low-birth weight infants. The objective of this study was to determine if in neonates who can consume only 70 % of their protein and energy requirements for 8 days, enteral leucine supplementation will upregulate the mammalian target of rapamycin (mTOR) pathway in skeletal muscle, leading to an increase in protein synthesis and muscle anabolism. Nineteen 4-day-old piglets were fed by gastric tube 1 of 3 diets, containing (kg body weight(-1) · day(-1)) 16 g protein and 190 kcal (CON), 10.9 g protein and 132 kcal (R), or 10.8 g protein + 0.2 % leucine and 136 kcal (RL) at 4-h intervals for 8 days. On day 8, plasma AA and insulin levels were measured during 6 post-feeding intervals, and muscle protein synthesis rate and mTOR signaling proteins were determined at 120 min post-feeding. At 120 min, leucine was highest in RL (P < 0.001), whereas insulin, isoleucine and valine were lower in RL and R compared to CON (P < 0.001). Compared to RL and R, the CON diet increased (P < 0.01) body weight, protein synthesis, phosphorylation of S6 kinase (p-S6K1) and 4E-binding protein (p-4EBP1), and activation of eukaryotic initiation factor 4 complex (eIF4E · eIF4G). RL increased (P ≤ 0.01) p-S6K1, p-4EBP1 and eIF4E · eIF4G compared to R. In conclusion, when protein and energy intakes are restricted for 8 days, leucine supplementation increases muscle mTOR activation, but does not improve body weight gain or enhance skeletal muscle protein synthesis in neonatal pigs.


Animal Feed/analysis , Dietary Supplements/analysis , Leucine/metabolism , Muscle Proteins/metabolism , Protein Biosynthesis , Swine/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Energy Metabolism , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4E/metabolism , Female , Insulin/metabolism , Male , Muscle Proteins/genetics , Muscle, Skeletal/growth & development , Muscle, Skeletal/metabolism , Phosphorylation , Swine/genetics , Swine/growth & development
...